Refine Your Search

Topic

Author

Search Results

Technical Paper

The Texas Diesel Fuels Project, Part 4: Fuel Consumption, Emissions, and Cost-Effectiveness of an Ultra-Low-Sulfur Diesel Fuel Compared to Conventional Diesel Fuels

2005-04-11
2005-01-1724
The Texas Department of Transportation (TxDOT) began using an ultra-low-sulfur, low aromatic, high cetane number diesel fuel (TxLED, Texas Low Emission Diesel) in June 2003. They initiated a simultaneous study of the effectiveness to reduce emissions and influence fuel economy of this fuel in comparison to 2D on-road diesel fuel used in both their on-road and off-road equipment. The study incorporated analyses for the fleet operated by the Association of General Contractors (AGC) in the Houston area. Some members of AGC use 2D off-road diesel in their equipment. One off-road engine, two single-axle dump trucks, and two tandem-axle dump trucks were tested. The equipment tested included newer electronically-controlled diesels. The off-road engine was tested over the TxDOT Telescoping Boom Excavator Cycle. The dump trucks were tested using the “route” technique over the TxDOT Single-Axle Dump Truck Cycle or the TxDOT Tandem-Axle Dump Truck Cycle.
Technical Paper

Analysis of Factors that Affect the Performance of Railplugs

2005-04-11
2005-01-0252
As natural gas engines are designed to operate leaner and with increased boost pressure, durability of the spark plugs becomes problematic. Among the various new ignition devices that have been considered to solve some of the problems facing spark plugs, railplugs appear to hold clear advantages in some areas. There are two types of railplugs: coaxial rail and parallel rail. This paper reports the results of an experimental study of various parameters that affect the performance of parallel railplugs. Their performance was quantified by the distance that the arc traveled along the rails from the initiation point. Travel along the rails is thought to be an important performance metric because rail-travel limits excessive local wear and produces a distributed ignition source which can potentially reduce mixture inhomogeneity induced ignition problems.
Technical Paper

A New Ignitior for Large-Bore Natural Gas Engines - Railplug Design Improvement and Optimization

2005-04-11
2005-01-0249
It is a very challenging problem to reliably ignite extremely lean mixtures, especially for the low speed, high load conditions of large-bore natural gas engines. If these engines are to be use for the distributed power generation market, it will require operation with higher boost pressures and even leaner mixtures. Both place greater demands on the ignition system. The railplug is a very promising ignition system for lean burn natural gas engines with its high-energy deposition and high velocity plasma arc. It requires care to properly design railplugs for this new application, however. For these engines, in-cylinder pressure and mixture temperature are very high at the time of ignition due to the high boost pressure. Hot spots may exist on the electrodes of the ignitor, causing pre-ignition problems. A heat transfer model is proposed in this paper to aid the railplug design. The electrode temperature was measured in an operating natural gas engine.
Technical Paper

Further Development of an On-Board Distillation System for Generating a Highly Volatile Cold-Start Fuel

2005-04-11
2005-01-0233
The On-Board Distillation System (OBDS) extracts, from gasoline, a highly volatile crank fuel that enables simultaneous reduction of start-up fuel enrichment and significant ignition timing retard during cold-starting. In a previous paper we reported reductions in catalyst light-off time of >50% and THC emissions reductions >50% over Phase I of the FTP drive cycle. The research presented herein is a further development of the OBDS concept. For this work, OBDS was improved to yield higher-quality start-up fuel. The PCM calibration was changed as well, in order to improve the response to intake manifold pressure transients. The test vehicle was tested over the 3-phase FTP, with exhaust gases speciated to determine NMOG and exhaust toxics emissions. Also, the effectiveness of OBDS at generating a suitable starting fuel from a high driveability index test gasoline was evaluated.
Technical Paper

Voltage, and Energy Deposition Characteristics of Spark Ignition Systems

2005-04-11
2005-01-0231
Time-resolved current and voltage measurements for an inductive automotive spark system were made. Also presented are measurements of the total energy delivered to the spark gap. The measurements were made in air for a range of pressures from 1-18 atm, at ambient temperatures. The measured voltage and current characteristics were found to be a function of many ignition parameters; some of these include: spark gap distance, internal resistance of the spark plug and high tension wire, and pressure. The voltages presented were measured either at the top of the spark plug or at the spark gap. The measurements were made at different time resolutions to more accurately resolve the voltage and current behavior throughout the discharge process. This was necessary because the breakdown event occurs on a time scale much shorter than the arc and glow phases.
Technical Paper

From Spark Plugs to Railplugs – The Characteristics of a New Ignition System

2004-10-25
2004-01-2978
Ignition of extremely lean or dilute mixtures is a very challenging problem. Therefore, it is essential for the engine development engineer to understand the fundamentals and limitations of existing ignition systems. This paper presents a new railplug ignition concept, a high-energy ignition system, which can enhance ignition of very lean mixtures by means of its high-energy deposition and high velocity jet of the plasma. This paper presents initial results of tests using an inductive ignition system, a capacitor discharge ignition system, and a railplug high-energy ignition system. Discharge characteristics, such as time-resolved voltage, current, and luminous emission were measured. Spark plug and railplug ignition are compared for their effects on combustion stability of a natural gas engine. The results show that railplugs have a very strong arc-phase that can ensure the ignition of very dilute mixtures.
Technical Paper

The Texas Diesel Fuels Project, Part 2: Comparisons of Fuel Consumption and Emissions for a Fuel/Water Emulsion and Conventional Diesel Fuels

2004-03-08
2004-01-0087
The Texas Department of Transportation began using an emulsified diesel fuel in 2002. They initiated a simultaneous study of the effectiveness of this fuel in comparison to 2D on-road diesel fuel and 2D off-road diesel. The study included comparisons of fuel economy and emissions for the emulsion, Lubrizol PuriNOx®, relative to conventional diesel fuels. Two engines and eight trucks, four single-axle dump trucks, and four tandem-axle dump trucks were tested. The equipment tested included both older mechanically-controlled diesels and newer electronically-controlled diesels. The two engines were tested over two different cycles that were developed specifically for this project. The dump trucks were tested using the “route” technique over one or the other of two chassis dynamometer cycles that were developed for this project In addition to fuel efficiency, emissions of NOx, PM, CO, and HCs were measured. Additionally, second-by-second results were obtained for NOx and HCs.
Technical Paper

The Texas Diesel Fuels Project, Part 3: Cost-Effectiveness Analyses for an Emulsified Diesel Fuel for Highway Construction Equipment Fleets

2004-03-08
2004-01-0086
The Texas Department of Transportation (TxDOT) began using an emulsified diesel fuel as an emissions control measure in July 2002. They initiated a study of the effectiveness of this fuel in comparison to conventional diesel fuel for TxDOT's Houston District operations and included the fleet operated by the Associated General Contractors (AGC) in the Houston area. Cost-effectiveness analyses, including the incremental cost per ton of NOx removed, were performed. NOx removal was the focus of this study because Houston is an ozone nonattainment area, and NOx is believed to be the limiting factor in ozone formation in the Houston area. The cost factors accounted for in the cost-effectiveness analyses included the incremental cost of the fuel (including an available rebate from the State of Texas), the cost of refueling more often, implementation costs, productivity costs, maintenance costs, and various costs associated with the tendency of the emulsion to separate.
Technical Paper

Impact of Railplug Circuit Parameters on Energy Deposition and Durability

2003-10-27
2003-01-3135
A railplug is a new type of ignitor for SI engines. A model for optimizing energy deposition in a railplug ignition system is developed. The model is experimentally validated using a low voltage railplug ignition circuit. The effect of various ignition circuit parameters on the energy deposition and its rate are discussed. Durability of railplugs is an important factor in railplug circuit design. As for all spark ignitors, durability of a railplug decreases as energy deposition is increased. Therefore recommendations are made to minimize wear and increase durability, while depositing sufficient energy to attain ignition, using a railplug.
Technical Paper

Engine Cycle Simulation of Ethanol and Gasoline Blends

2003-10-27
2003-01-3093
Ethanol is one of many alternative transportation fuels that can be burned in internal combustion engines in the same ways as gasoline and diesel. Compared to hydrogen and electric energy, ethanol is very similar to gasoline in many aspects and can be delivered to end-users by the same infrastructures. It can be produced from biomass and is considered renewable. It is expected that the improvement in fuels over the next 20 years will be by blending biomass-based fuels with fossil fuels using existing technologies in present-day automobiles with only minor modifications, even though the overall costs of using biomass-based fuels are still considerably higher than conventional fuels. Ethanol may represent a significant alternative fuel source, especially during the transition from fossil-based fuels to more exotic power sources. Mapping engines for flexible fuel vehicles (FFV), however, would be very costly and time consuming, even with the help of model-based engine mapping (MBM).
Technical Paper

Direct Measurement of Powertrain Component Efficiencies for a Light-Duty Vehicle with a CVT Operating Over a Driving Cycle

2003-10-27
2003-01-3202
In order to determine the factors that affect fuel economy quantitatively, the power flows through the major powertrain components were measured during operation over transient cycles. The fuel consumption rate and torque and speed of the engine output and axle shafts were measured to assess the power flows in a vehicle with a CVT. The measured power flows were converted to energy loss for each component to get the efficiency. Tests were done at Phase 1 and Phase 3 of the FTP and for two different CVT shift modes. The measured energy distributions were compared with those from the ADVISOR simulation and to results from the PNGV study. For both the Hot 505 and the Cold 505, and for both shift modes, the major powertrain loss occurs in the engine, including or excluding standby losses. However, the efficiency of the drivetrain/transmission is important because it influences the efficiency of the engine.
Technical Paper

An On-Board Distillation System to Reduce Cold-Start Hydrocarbon Emissions

2003-10-27
2003-01-3239
An On-Board Distillation System (OBDS) was developed to extract, from gasoline, a highly volatile crank fuel that allows the reduction of startup fuel enrichment and significant spark retard during cold starts and warm-up. This OBDS was installed on a 2001 Lincoln Navigator to explore the emissions reductions possible on a large vehicle with a large-displacement engine. The fuel and spark calibration of the PCM were modified to exploit the benefits of the OBDS startup fuel. Three series of tests were performed: (1) measurement of the OBDS fuel composition and distillation curve per ASTM D86, (2) measurement of real-time cold start (20 °C) tailpipe hydrocarbon emissions for the first 20 seconds of engine operation, and (3) FTP drive cycles at 20 °C with engine-out and tailpipe emissions of gas-phase species measured each second. Baseline tests were performed using stock PCM calibrations and certification gasoline.
Technical Paper

Optimization Techniques and Results for the Operating Modes of a Camless Engine

2003-03-03
2003-01-0033
Electronic control of valve timing and event duration in a camless engine enables the optimization of fuel economy, performance, and emissions at each engine operating condition. This flexible engine technology can offer significant benefits to each of these areas, but optimization techniques become crucial to achieving these benefits and understanding the principles behind them. Optimization techniques for an I4 - 2.0L camless ZETEC dynamometer engine have been developed for a variety of areas including: Cold Starts Cylinder Deactivation Full Load Idle Transient A/F control The procedure for the optimization of each of these areas will be presented in detail, utilizing both steady state and transient dynamometer testing. Experimental data will be discussed and the principles governing the response of the engine will be explained. Selection criteria for determining an optimum strategy for the different modes will be presented and recommendations will be discussed.
Technical Paper

Analysis of Performance Results from FutureTruck 2001

2002-03-04
2002-01-1209
The 2001 FutureTruck competition involved 15 universities from across North America that were invited to apply a wide range of advanced technologies to improve energy efficiency and reduce greenhouse gas impact while producing near-zero regulated exhaust emissions in a 2000 Chevrolet Suburban. The modified vehicles designated as FutureTrucks demonstrated improvements in greenhouse gas emissions, tailpipe emissions, and over-the-road fuel economy compared with the stock vehicle on which they were based. The technologies represented in the vehicles included ICE-engines and fuel cell hybrid electric vehicle propulsion systems, a range of conventional and alternative fuels, advanced exhaust emissions controls, and light weighting technologies.
Technical Paper

Effects of In-cylinder Flow on Fuel Concentration at the Spark Plug, Engine Performance and Emissions in a DISI Engine

2002-03-04
2002-01-0831
A fiber optic instrumented spark plug was used to make time-resolved measurements of the fuel vapor concentration history near the spark gap in a four-valve DISI engine. Four different bulk flow were investigated. Several early and late injection timings were examined. The fuel concentration at the spark gap was correlated with IMEP. Emissions of CO, HCs, and NOx were related to the type of bulk flow. For both early and late injection the CoVs of fuel concentration were generally lowest for the weakest bulk flow which resulted in a stable stratification. Strong bulk flows convected the inhomogeneities through the measurement area near the spark plug resulting in both large intracycle and cycle-to-cycle variation in equivalence ratio at the time of ignition.
Technical Paper

Effects of Piston Wetting on Size and Mass of Particulate Matter Emissions in a DISI Engine

2002-03-04
2002-01-1140
We have examined the influence of piston wetting on the size distribution and mass of particulate matter (PM) emissions in a SI engine using several different fuels. Piston wetting was isolated as a source of PM emissions by injecting known amounts of liquid fuel onto the piston top using an injector probe. The engine was run predominantly on propane with approximately 10% of the fuel injected as liquid onto the piston. The liquid fuels were chosen to examine the effects of fuel volatility and molecular structure on the PM emissions. A nephelometer was used to characterize the PM emissions. Mass measurements from the nephelometer were compared with gravimetric filter measurements, and particulate size measurements were compared with scanning electron microscope (SEM) photos of particulates captured on filters. The engine was run at 1500 rpm at the Ford world-wide mapping point with an overall equivalence ratio of 0.9.
Technical Paper

Effects of Fuel Volatility, Load, and Speed on HC Emissions Due to Piston Wetting

2001-05-07
2001-01-2024
Piston wetting can be isolated from the other sources of HC emissions from DISI engines by operating the engine predominantly on a gaseous fuel and using an injector probe to impact a small amount of liquid fuel on the piston top. This results in a marked increase in HC emissions. In a previous study, we used a variety of pure liquid hydrocarbon fuels to examine the influence of fuel volatility and structure on the HC emissions due to piston wetting. It was shown that the HC emissions correspond to the Leidenfrost effect: fuels with very low boiling points yield high HCs and those with a boiling point near or above the piston temperature produce much lower HCs. All of these prior tests of fuel effects were performed at a single operating condition: the Ford World Wide Mapping Point (WWMP). In the present study, the effects of load and engine speed are examined.
Technical Paper

Particulate Characterization of a DISI Research Engine using a Nephelometer and In-Cylinder Visualization

2001-05-07
2001-01-1976
A nephelometer system was developed to characterize engine particulate emissions from DISI engines. Results were correlated with images showing the location and history of particulates in the cylinder of an optical engine. The nephelometer's operation is based upon the dependence of scattered laser light on particulate size from a flow sampled from the exhaust of an engine. The nephelometer simultaneously measured the scattered light from angles of 20° to 160° from the forward scattering direction in 4° increments. The angular scattering measurements were then compared with calculations using a Mie scattering code to infer information regarding particulate size. Measurements of particulate mass were made based upon a correlation developed between the scattered light intensity and particulate mass samples trapped in a 0.2-micron filter. Measurements were made in a direct injection single-cylinder spark ignition research engine having a transparent quartz cylinder.
Technical Paper

Refinement of a Dedicated E85 1999 Silverado with Emphasis on Cold Start and Cold Drivability

2001-03-05
2001-01-0679
The University of Texas 2000 Ethanol Vehicle Challenge team remains focused on cold start, cold drivability, fuel economy, and emissions reduction for our 2000 Ethanol Vehicle Challenge entry. We used the stock PCM for all control functions except control of an innovative cold-start system our team designed. The primary modifications for improved emissions control involved ceramic coating of the exhaust manifolds, use of close-coupled ethanol-specific catalysts, use of a moddified version of the California Emissions Calibrated PCM, and our cold-start system that eliminates the need to overfuel the engine at the beginning of the FTP. Additionally, we eliminated EGR at high load to improve power density. Major modifications, such as increasing the compression ratio or pressure boosting, were eliminated from consideration due to cost, complexity, reliability, or emissions penalties.
Technical Paper

The Effects of Fuel Volatility and Structure on HC Emissions from Piston Wetting in DISI Engines

2001-03-05
2001-01-1205
Piston wetting can be isolated from the other sources of HC emissions from DISI engines by operating the engine predominantly on a gaseous fuel and using an injector probe to impact a small amount of liquid fuel on the piston top. This results in a marked increase in HC emissions. All of our prior tests with the injector probe used California Phase 2 reformulated gasoline as the liquid fuel. In the present study, a variety of pure liquid hydrocarbon fuels are used to examine the influence of fuel volatility and structure. Additionally, the exhaust hydrocarbons are speciated to differentiate between the emissions resulting from the gaseous fuel and those resulting from the liquid fuel. It is shown that the HC emissions correspond to the Leidenfrost effect: fuels with very low boiling points yield high HCs and those with a boiling point near or above the piston temperature produce much lower HCs.
X